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Abstract
This work applies a recently developed first-principles scheme for calculating
core excited states in solids to non-resonant inelastic x-ray scattering. The
model explicitly includes the interaction between the excited electron and the
core hole. The calculated results are compared with recent experimental results
on inelastic x-ray scattering from K shells of Li, Be and C in lithium fluoride,
beryllium oxide and diamond, respectively. The overall agreement between
experimental and theoretical spectra is found to be good in all cases, even for
the near-edge structure.

1. Introduction

It is well known that inelastic scattering probes, such as non-resonant inelastic x-ray scattering
(NRIXS) and electron-energy-loss spectroscopy (EELS), can provide similar information to
optical or x-ray absorption spectroscopy (XAS). Additional information in NRIXS and EELS
as a function of energy loss can be obtained by varying the magnitude and the direction
of the momentum transfer probed. This can be used, for example, to study the dispersion
of longitudinal excitons in insulators [1, 2], the spatial dimensions of excitons in molecular
systems [3] and the directional dependences of plasmon dispersions in semiconductors [4, 5]
and metals [6, 7]. The momentum-transfer dependence of x-ray edges has also been studied
using NRIXS [8].

Our analysis uses a recently developed first-principles scheme for modelling inner-shell
excitations created by inelastic scattering. Here we compare calculated results to recent
experimental x-ray Raman scattering data for K edges that can be quite different in character.
X-ray Raman spectra for the Be K edge in BeO show a strongly bound core exciton that gives
rise to a pronounced, well-separated peak in the experimental data. The Li K edge in LiF, on
the other hand, shows two strongly bound exciton levels with different symmetries (even and
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odd parity), whose spectral weights vary as a function of momentum transfer. We have also
studied the carbon K-edge fine structure in diamond, which has attracted substantial interest
over the years and is known to have a weakly bound core exciton.

An accurate theoretical treatment of inelastic scattering requires going beyond a simple
single-particle picture. In this work, we treat the scattering process as a two-body problem
(one electron plus one hole). This is done by solving the Bethe–Salpeter equation (BSE), i.e.,
the equation of motion of the two-body Green’s function [9, 10]. In recent years there have
been several studies applying this formalism at an ab initio level to optical absorption [11–13],
and also very recently to NRIXS from valence electrons of semiconductors [1].

We wish to emphasize the need to include the core-hole–electron interaction in the
description of x-ray Raman scattering (XRS). We have used a first-principles scheme [14]
to model the core-hole potential that the excited electron experiences in the final state. The
edge region of the spectra is most sensitive to the core-hole potential. Further away from the
edge, the crystal potential of the material becomes more important. Both of these regions of
the spectra can be studied with non-resonant inelastic x-ray scattering, but here we concentrate
on the near-edge structure.

We first introduce the relation between the double-differential scattering cross section
measured in NRIXS investigations and the dynamic structure factor describing the target
system’s macroscopic response to an external electromagnetic field. Next, we discuss the
implementation of the computational scheme for XRS studies. A short description of the
experimental set-up is also given. Finally, we compare and analyse the differences between
calculated and experimental spectra.

2. X-ray Raman scattering

Within first-order perturbation theory the double-differential scattering cross section for
inelastic x-ray scattering can be written with the help of the dynamic structure factor, S(q, ω):

d2σ

d� dω
= (dσ/d�)T hS(q, ω)

where (dσ/d�)T h is the Thomson scattering cross section. S(q, ω) depends only on the
momentum q and energy ω transferred from the photon to the scattering system. The dynamic
structure factor can be written in terms of the initial (|I 〉) and the final (|F 〉) electron states as

S(q, ω) =
∑
F

|〈F |
∑
i

eiq·ri |I 〉|2δ(ω + EI − EF )

where EI is the initial- and EF the final-state energy. The index i runs over all electrons.
Using the completeness of the final states and taking the ground state |0〉 as the initial state we
can rearrange the expression for S(q, ω) as

S(q, ω) = lim
η→0

[
− 1

π
Im〈0|ρ̂q

1

ω − Ĥ + iη
ρ̂†

q |0〉
]
. (1)

Ĥ is the Hamiltonian of the system and ρ̂q is a Fourier component of the density operator. In
the second-quantized form, ρ̂q is

ρ̂†
q =

∑
i,j,k,k′

〈ψik|eiq·r|ψjk′ 〉â†
ikâjk′ (2)

whereψik andψjk′ are unoccupied and occupied single-particle states, respectively. When the
occupied state in equation (2) is a localized core state, and the momentum transfer is small, the
dipole approximation eiq·r ≈ 1 + iq ·r is valid. In this case ρ̂q reduces to a dipole operator and
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S(q, ω) for XRS has an expression that is equivalent to the cross section for x-ray absorption,
except that the polarization vector is replaced by the momentum-transfer vector [15]. When the
momentum transfer is increased, the dipole approximation is no longer valid and excitations
with different spatial symmetries can be studied.

As explained in reference [14], we approximate the core-excited-state wave function with
an electron–core-hole pair wave function:

�(re, rh) =
∑
nk

Cnkψnk(re)
[
ψTBk−qα(rh)

]∗

where ψnk is a conduction band state, ψTBk−qα is a tight-binding core state and Cnk are the
expansion coefficients. The atomic state nlm of the core hole and its position in the unit cell
τ are represented by the parameter α:

ψTBk−qα(rh) = (1/
√
N)

∑
R

ei(k−q)·(R+τ )φnlm(rh − R − τ )

where N is the number of k-points. The summation is done over the lattice vectors R

and the basis vector τ has a single value. In what follows, we will denote the electron–
core-hole pair wave function with the appropriate indices as ψnk(re)[ψTBk−qα(rh)]

∗ .= |nkα〉.
The conduction band wave functions ψnk are calculated using local-density-approximation
(LDA) [16] pseudopotential [17] codes and the atomic wave functions φnlm used for the core
hole are calculated with an atomic, Hartree–Fock code. As an approximation for the full
many-body Hamiltonian Ĥ in equation (1) we use an effective Hamiltonian:

Ĥeff = Ĥ0 + V̂D + V̂X.

The effective Hamiltonian includes a single-particle part, Ĥ0, and direct (V̂D) and exchange
(V̂X) interactions of the electron with the core hole. The matrix elements of Ĥeff are

〈nkα|Ĥeff |n′k′α′〉 = δαα′ [(εnk − Eα)δnn′δkk′ + 〈ψnk|V̂D(α) + V̂X(α)|ψn′k′ 〉].
Here εnk is the single-particle energy of the conduction band electron and Eα is the core-hole
energy. In our current scheme the core-hole energy is not calculated and Eα is set equal to the
conduction band minimum (CBM). When comparing calculated spectra with the experimental
results, a rigid shift in energy is applied to the calculated spectrum to put it on the same energy
scale as the experimental one. Because the core-hole state is kept fixed in the calculation,
the electron–core-hole interaction effectively couples different electron states. This means
that the final-state electron feels an effective, symmetry-broken, single-particle potential. As
explained in [14] we separate VD into three parts:

VD(r) = Vα(r) +)Vα(r) +)Vval(r). (3)

HereVα is the bare core-hole potential,)Vα(r) accounts for screening by the core electrons and
)Vval(r) accounts for screening by the valence electrons. The first two terms Vα(r)+)Vα(r)
are calculated within an atomic program. The valence screening is calculated using a RPA [18]
dielectric matrix ε−1:

)Vval(r) =
∫

d3r ′ (ε−1(r, r′)− δ(r − r′))(Vα(r′) +)Vα(r
′)).

A similar approach was applied to screening of impurities by Mattausch et al [19]. In principle,
the screening potential should be energy dependent as explained in references [10] and [20].
However, this energy dependence would make the Hamiltonian non-Hermitian, which would
increase the computational cost considerably. The potential VD has the correct long-range
behaviour, 1/(ε∞r), where ε∞ is the macroscopic dielectric constant. Matrix elements
involving the core and conduction band states are needed for computing the exchange potential
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VX and ρ̂q. These matrix elements are calculated using a pseudopotential-inversion scheme
that was originally developed in reference [21] and later refined [22].

Using the approximations introduced in this section, we can calculate the dynamic structure
factor:

S(q, ω) = −(1/π)Im
∑
nk

∑
n′k′

〈0|ρ̂q|nkα〉〈nkα|(ω − Ĥeff + iη)−1|n′k′α〉〈n′k′α|ρ̂†
q |0〉

using the Haydock recursion method [23]. The broadening parameter η should include
both electron and hole lifetime effects. We calculate the lifetime of the excited electron
within the so-called ‘GW approximation’ [24], using a generalized plasmon-pole model and
a model dielectric function [25]. This means that η depends on the excitation energy, and this
dependence is easily realized by varying η when evaluating the continued-fraction expansion
encountered at the end of one calculation when using the Haydock recursion method. (The
‘GW approximation’ derives its name from its approximating the electron self-energy as
the product of the one-electron Green’s function G and the dynamically screening Coulomb
interactionW .)

3. Experimental set-up

The scattering experiments reported here were carried out at the inelastic scattering beamline
X21 at the National Synchrotron Light Source (USA). The radiation from the multipole wiggler
was monochromatized using a horizontally bent triangular silicon (220) crystal. The Rowland
circle geometry produced simultaneous focusing to the sample with a spot size of 0.2 mm
horizontal × 10 mm vertical and a monochromatic flux of about 2 × 1011 photons s−1. The
scattered photon energy was analysed utilizing a Rowland circle spectrometer with a spherically
bent silicon (111) analyser crystal with bending radius of 1 m. During energy-loss scans, the
analyser Bragg angle was kept fixed within a few degrees off of the backscattering geometry
to minimize the source-size contribution to the energy resolution, while the incident energy
was scanned over the desired range. The incident flux was monitored by an ion chamber. The
total-energy resolution (determined from the width of the quasielastic line) varied, depending
on the sample, between 0.7 eV and 1 eV. The experimental set-up is described in more detail
elsewhere [26, 27]. All the measurements were carried out either in symmetric reflection or
symmetric transmission geometries with the momentum transfer perpendicular or parallel to the
sample surface, respectively. The momentum transfer was controlled by varying the scattering
angle. Single crystals of diamond and LiF were used, while the BeO was polycrystalline.

4. Results and discussion

The experimental XRS results for near the Be K edge in BeO can be seen in figure 1, together
with our calculations with and without the core-hole–electron interaction. Because a poly-
crystalline BeO sample was used in the experiment, the calculations required a spherical
average to be taken over the direction of momentum transfers using a six-point formula [28] for
the integration. For the calculations, we have used lattice constants a = 2.698 Å, c = 4.380 Å
and the wurtzite structure with internal parameter u = 0.378 to calculate LDA band energies
and the wave functions. Our calculated conduction bandwidth was increased by 11% to agree
with GW [24] band energies. A linear background arising from scattering from the valence
electrons was subtracted from the experimental data, which were then normalized to have the
same area under the curve as the calculated spectra for the energy range shown in the figure.
The most pronounced feature of the experimental spectrum is the strong core-exciton peak
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Figure 1. Calculated and measured x-ray Raman scattering spectra at the Be K edge in BeO. The
momentum transfer is 1.77 Å−1. The error bars drawn for the experimental data points indicate
the standard uncertainty. The calculated spectra (offset vertically) with and without the core-hole–
electron interaction are given by the solid and dashed line, respectively.

around 119 eV that is about 0.74 eV below the edge of the conduction band. As expected,
this peak is present in the spectrum calculated with the electron–core-hole interaction but
absent in the spectrum that was calculated neglecting this interaction. The overall spectral
features in the experimental spectra and spectra calculated including the core-hole–electron
interaction show good agreement up to quite large energy transfers. However, the calculation
slightly overestimates the spectral weight of the core exciton. On the other hand, the near-edge
structure and overall agreement are completely lost if the interaction is neglected.

The double-peak exciton structure at the Li K edge in LiF has been previously studied with
EELS [2] and serves as another good example to use to study the validity of our experimental
technique and the computational scheme. LiF has the rock-salt structure with a lattice constant
of 4.02 Å. Figure 2 shows the experimental result for the dynamic structure factor S(q, ω)
extracted from the inelastic scattering cross section for three momentum transfers along the
Cartesian (100) direction. The calculated spectra for the same momentum-transfer values are
shown in figure 3. Both the experimental and the calculated results show two distinct exciton
peaks about 3 eV below the continuum edge (around ω = 64.5 eV).

On the basis of the calculations, the two peaks in the experimental spectra can be
associated with the even-parity (dipole-forbidden) exciton around 61.5 eV and the odd-parity
(dipole-allowed) exciton around 62.2 eV. For the low-momentum region, the dipole-allowed
transition is dominant, but as the momentum transfer is increased, the weight of the even-parity
exciton increases. This characteristic can be qualitatively explained by the behaviour of the
corresponding matrix elements.
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Figure 2. Experimental spectra at the Li K edge in LiF. The magnitudes of the momentum transfers
are given in the figure. The error bars drawn for the experimental data points indicate the standard
uncertainty. The spectra are offset for clarity and scaled to have approximately the same peak
height. The estimated positions of the even- and odd-parity excitons are indicated by the dashed
vertical lines.

The intensity variation of the exciton peaks of the calculated spectra follows quite faithfully
the behaviour found in the experimental spectra, although the energy splitting between the
even- and odd-parity excitons is underestimated. Because the calculated splitting is too small,
the spectra calculated using the experimental resolution of 0.7 eV do not show the same
shoulder structure as the experimental spectra. However, this structure is clearly visible if
a better resolution of 0.2 eV is used. We speculate that the predicted splitting is too small
because we fail to include correlation between the excited electron and the remaining Li 1s
core electron. In the free Li+ ion, the 1s12s1(1S) → 1s12p1(1P) splitting is 1.29 eV, compared
to 0.98 eV as found in a Hartree–Fock calculation (with proper symmetrization of the spatial
part of the wave function in the singlet state taken into account). Presumably, an analogous
underestimation of the splitting in our present solid-state calculation should also arise. Results
for the calculations that neglect the electron–core-hole interaction are not shown, because they
do not treat the excitons at all.

As our last example, we consider the near-edge structure of diamond, which has attracted
experimental and theoretical interest [29–31]. We have calculated the single-particle states and
energies for diamond within the LDA using a lattice constant of 3.57 Å. The calculated and
the experimental results for the structure near the C K edge for diamond in XRS are shown in
figure 4. The energy scale of the calculated spectra is shifted by 290 eV. The calculated results
with and without including the electron–core-hole interaction are shown, and experimental
spectra were normalized in the same way as for BeO. The spectrum calculated including the
interaction correctly predicts the weight and shape of most of the various structures observed
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Figure 3. Calculated spectra at the Li K edge in LiF. The magnitudes of the momentum transfers
are given in the figure. For each value of momentum transfer two calculated curves are given.
The thin solid line is calculated using the experimental energy resolution of 0.7 eV. The bold solid
line is calculated using a smaller (0.2 eV) resolution in order to separate the even- and odd-parity
exciton lines. The calculated positions of the even- and odd-parity excitons are indicated by the
dashed vertical lines. The data are offset and scaled as in figure 2.

in the spectrum. The structure at the edge, which can be attributed to the previously mentioned
shallow core exciton, is overestimated. Additionally, the features around 297 eV and 306 eV are
shifted down by about 1 eV in the calculated spectra. This seems to indicate that the core-hole–
electron interaction is slightly overestimated in the current scheme. However, the disagreement
between the calculated and experimental spectra is much worse if the interaction is totally
neglected. The 290 eV shift used for diamond is slightly higher than the continuum edge
estimated by other experimental methods (Ma et al: 289.7 eV [29]; Morar et al: 289.2 eV [29];
and Batson et al: 289.18 eV [30]). However, it gives reasonable agreement between the
theoretical and experimental XRS edge positions when the overestimation of the exciton effects
is taken into account.

5. Conclusions

We have presented theoretical and experimental results for non-resonant x-ray Raman
scattering from core electrons in several different materials: Li 1s electrons in LiF, Be 1s
electrons in BeO and C 1s electrons in diamond. The overall agreement between the exp-
erimental and the calculated results is very good, with spectral features near the edge being
rather well reproduced. As an exception, the theoretical splitting of the double-peak exciton
structure at the Li K edge in LiF was too small, which we suggest could result from neglecting
correlation effects involving the exciton’s electron and the remaining Li 1s core electron.



8046 J A Soininen et al

285 290 295 300 305 310

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

S
(q

,Z
)

Energy loss (eV)

Figure 4. Calculated x-ray Raman spectra near the C K edge in diamond together with a measured
excitation spectrum. The momentum transfer is 2.74 Å−1 along the [111] direction. Calculated
results including the core-hole–electron interaction are indicated by the solid line, whereas the
dashed line indicates results that omit the interaction. The calculated spectra are offset for clarity.

Otherwise positions of the excitations seem to be rather well predicted using our current
scheme. Examined more closely, the relative weight of the near-edge structures is sometimes
slightly wrong. One possible reason for this is the fact that even a small error in the core-hole
potential can have a large effect on these features.

In conclusion, this work gives examples of the ability to vary the momentum transfer in the
case of non-resonant inelastic x-ray scattering. This makes such scattering a complementary
way to study features close to the edges from a momentum viewpoint and, in particular, to
examine transitions that are not dipole allowed. Furthermore, for the cases considered in the
work, most spectral features are qualitatively and even quantitatively well understood on the
basis of first-principles calculations.
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